£

o

L[

\

Gl

i

-

1

il

I i

)

e

il

{

AN ANALYSIS OF FAILURE HANDLING IN CHAMELEON,
A FRAMEWORK FOR SUPPORTING COST-EFFECTIVE FAULT TOLERANT SERVICES

BY
ERIK EDWARD HAAKENSON

B.S., Rensselaer Polytechnic Institute, 1995

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1998

Urbana, Illinois

© Copyright by Erik Edward Haakenson, 1998

[

i

1

1

. I

i Al |

Wl
ii il ‘

1

il

i

i
N

fik

ie | ildtib 101 0

L]

pab b bl

il

i;‘:

|

)

{

|

{

‘: i

I

G

Qi

I

Lo

(i

4

i

L

L
w

vt I

ACKNOWLEDGMENTS

I would like to thank Zbigniew Kalbarczyk and Saurabh Bagchi, for help with providing
ideas for the simulation and information about Chameleon. I would also like to thank Keith
Whisnant for playing a major part in the development of the simulation. Finally, I would
like to thank Professor Ravi Iyer, my research advisor, who was very flelpful and provided

encouragement, guidance, and advice when I needed them.

il

TABLE OF CONTENTS

CHAPTER PAGE
1 INTRODUCTION ittt e e e e e e e e e e e 1
2 RELATED WORK o vt e e e e e e e s e e 3
3 CHAMELEON FRAMEWORK e 6
3.1 OVEIVIEW . v v o o e e e e e e e e 6
3.2 Components of Chameleon 8
3.2.1 Fault Tolerance Manager 8

3.2.2 Reliable, Mobile Agents e e 11

3.2.3 Surrogate Managers o 12

324 HostDaemons v i i i e 12

325 AgentLibraries L oo 13

3.3 Fault Tolerance Strategies 14
3.4 An Example Application 15
3.5 SUMMATY « « v v v v v e e e e e e e e e e e e e e e 18
SIMULATION OF CHAMELEON e 20
4.1 OVELVIEW . v v v v o v e e e e e e e e e e e e 20
4.2 DEPEND i e AR 20
4.3 "Simulated System Description L L 21
44 DataStructures.o T 22
44.1 Agent Classes o i e e 23

442 Manager Classes v v v i i i it i e e 23

4.4.3 Surrogate Manager Classes 24

4.5 Simulation Behavior e 24
FAULT HANDLING IN THE SIMULATION 25
51 OVEIVIEW . v v v v v e e e e e e e e e e e e 25
5.2 Fault Injection Strategy o o 25
5.3 TFault Detection Strategies o 27
531 Agenmt 27

5.3.2 Surrogate Managero 28

53.3 User Application e 28

534 HOSt . v v v i i e e e e e e e e 28

5.3.5 FTM . o ot it e e e e e e e 28

5.4 Fault Recovery Strategies 29
5.4.1 Execution Agent e e 29

5.4.2 Heartbeat Agent oo 30

54.3 Voter Agent 30

5.4.4 Surrogate Manager o 31

iv

{

(1

]

£

LK

Wim

41

4l

!

t

i

'
|

iy o1

TNl

i

LN

2

I

i

{

T

L

(Tt

{0

o

4

I

{

4dii

(il

(&

il

(

iy

{

54.5 User Application 31

546 Host 32
5.5 An Example Failure Scenario 32
56 Summary 34
EXPERIMENTALRESULTS 36
61 Overview 36
6.2 Simulation Parameters, 36
6.3 Scenarios Evaluated and Measurements Taken 36
6.4 Analysisof Results 38
CONCLUSIONS AND FUTURE WORK 45
REFERENCES 47

v

1

i

LIST OF TABLES B
Table] Page Lo
3.1 Chameleon system components, their tasks, and recover& mechanisms. 9 ;

v
5.1 Simulated fault injections, detections, and recoveries. ool 26
6.1 Parameters used in the simulation. [37 ‘
6.2 Overhead incurred by Chameleon under various loads and fault tolerance strategies. 39 b
6.3 Performance degradation caused by single failures in duplicated execution mode. . . 39 —
6.4 Performance degradation caused by single failures in TMR mode. 41 =
6.5 Performance degradation caused by single failures in quad mode. 42 -

=

=

vi

{1

i1

&l

d

{w il

gl

di

A il

|

 JRIN

(W

i

€1

I i

|y

i

h

wu!\ pi"

L

P

s

o

LIST OF FIGURES

Figure Page
3.1 Chameleon: A reliable, networked computing environment (this figure is taken from
Iyer,et. al. [9]). o 6
3.2 User communication and query agent. 16
3.3 Agent and surrogate manager installation. 17
3.4 Application installation and execution. 18
3.5 Completion of application. 19
4.1 Class hierarchy of simulated Chameleon components. 22
5.1 Host failure detected by heartbeat agent. 33
5.2 Voter agent regeneration. L 34
5.3 Execution agents notified of new voteragent. 35
6.1 Simultaneous failures in an execution agent and its surrogate manager. 44
vii

:

| i
l 7 i

i 0 i g e gn U

Gl j

til

ARGl |

~

CHAPTER 1

INTRODUCTION

- The desire for low—cost reliable computing is increasing. Most current fault tolerant com-
puting solutions are not very flexible, i.e., they cannot adapt to reliability requifements' of newly
emerging applications in business, commerce, and manufacturing. It is important that users
have a ﬂexible,felia.ble platform to support both critical and noncritical applications.

Chameleon [9], currently under development at the Center for Reliable and High-Perform-
ance Computing at the University of Illinois, is a software framework for supporting cost-
effective, adaptable, networked fault tolerant service. Because of a desire for efficiency and
adaptability, the Chameleon architecture is intended to support heterbgeneity and .scalability.
Scalability here implies physical scalability, resource scalability, and fault tolerance scalability.

During the design of such complex systems as Chameleon, there is a need to validate the
capabilities and measure the performance of the séystem. This can be done thi'ough analytical
methods, experimentation, or simulation. Once a functional architecture is defined, simulation
is often the most viable of these options. No Wofking version of the system is necessary, an‘d it
allows for a more complex model of the system than mathemgtical analysis.

In the case of Chameleon, we are interested in analyzing the effectiveness of different types
of fault detection and recovery strategies. We are also interested in mea.éuring the overhead

incurred by the fault detection and recovery mechanisms. These measurements will allow deci-

sions to be made about which recovery strategies should be used in the actual implementation
of Chameleon.

The goal of this thesis is to give a detailed description of the efforts to simulate fault injection,
detection, and recovery in Chameleon, and of the results obtained from this simulation. This
thesis is divided into seven chapters. The second chapter discﬁsses_ related work in the area of
distributed and reliable computing. The third chapter gives a general overview of Chameleon
and its components. The fourth chapter describes the simulation. Chapter 5 gives a detailed
description of the fault inje;:tion, detection, and recovery strategies that have been simulated.
The experimental results obtained from the simulation are described the sixth éhaptef, and the

conclusion is given in the final chapter.

{

i
[T

i)

gl

{u

IR

1

11y

{l [

TR [HEE

'Kl

|

LA

!

fli i

1l

il @ i

Qi

A il

o
L

CHAPTER 2

RELATED WORK

Current épproa.ches to designing reliable networked computing environments from unreli-
able components are based primarily on taking advantage of distributed groups of cooperating
processes. Most of these designs require a specialized, complex software layer that must be
installed on each pa.rtigipating computa,tibn node. Several of these systems are focused on pro-
viding a softwére environment designed to handle distributed 'applications. Several of these
approaches are discussed in this chapter.!

Isis {2] provides tools for managing aﬁd programming with process groups. Using these
tools allows a programmer to construct group~based softwaxé that provides reliability thrbugh
explicit replication of code and data.

Transis [6] is a multicast communication layer that enables the creation and execution of
fault tolerant distributed épplications -in é. networked environment. It supports reliable group
communication for high—ava.ilability applicatibns. Transis allows partitionable operation with
the a.bilify to reliably merge components when recovering.

Horus [18] also uses the group communication paradigm. It provides a framework for de-
signing disfributed applications at a minimal cost. The Horus tool can be used to aid in the

construction of reliable services. It is a newer generation of the Isis toolkit. -

!Cristian [4] provides more detail about the concepts behind distributed fault tolerant systems. Birman [1]
discusses group communications and numerous existing fault tolerant distributed systems in more detail.

The systems outlined above are primarily concerned with the group processing paradigm
rather _than being particularly geared toward fault tolerance. A fev? systems ciescribed below
did plac‘e a primary emphasis on fault tolerant and/or highly available computing.

Delta—4 [13] was one of the earlier éﬁ'orts to build a dependable distributed system. It used
an open architectﬁre in which a trusted module was loaded on each participatiﬁg host to execute
a multipoint communication protocol. The protocol was used to coordinate process groups,
process errors, and iperform fault treatment. Delté,—4 also fequired a ‘specialized hardware
network adaptor card to guarantee proper fail-silent behavior.

Some aspects of service availability are addressed in the Piranha [10] tool. Piranha acts
as a fault tolerantg process manager, exploiting the dynamic replication of objects to achieve
high availability. It is designed to be a CORBA~based application-restart service and monitor.
Piranha addresses needs for heterogeneity, interoperability, extensibility, and availé.bility by
making use »of CORBA’S Interface Description Language.

The Wolfpack [11] system from Microsoft® provides clustering extensions to Windows
NT® for improving service availability and system scalability. Issues intended to be addressed
in future versions of Wolfpack include distributed applicatiohs; higher performance intercon-
nects, distributed storage, and load balancing.

At Sun Microsystems, work has been done on Ultra Enterprise Clusters [16], designed to
prpyidg highly available data services. The Ultra Enterprise Cluster High Availability 1.3
server provides automatic, software-based fault detection and recovery mechanisms. Speciaiizéd
”srcr>r'f1;wa.re allows a set of two computing nodes to monitor each .othe'r a.¥1d redirect data requests

in the case of a software or hardware failure.

4 oy € o« N oen &0 &

1

(|

(VT L 1

2l

pappn
¥

{%

ServerNet [8] from Tandem Computers is a system area network desighed to support reliable,

= efficient communications. It provides a combination hardware/software layer on which fault
- . tolerant systems can be built. ServerNet is flexible in that the routers in the systém can be
~ configured in several different topologies. Error detection and recovery are also provided in
= the form of checksums on messages and an access validation and translation table for memory
v‘ .

- requests.

~ The systems described here that explicitly address fault detection and recovery each require
%;-i a specialized and complex software layer and, in some cases, additional hardware. Also, many of
— the systems described above provide an environment for constructing distributed applications.
~ Chameleon, on the other hand, explicitly provides fault tolerance through a wide range of error
- detection and recovery mechanisms. Not all of these systems have such explicit mechanisms,
- .and many rely only on timeouts.

é

= _

=

—

%

|

fl

1
I

il

CHAPTER 3

CHAMELEON FRAMEWORK

3.1 Overview

Chameleon (Figure 3.1) is a network-based infrastructure with the capability of adapting to
é,pplication—speciﬁc availability requirements. Primary issues addressed in designing Chameleon
include efficient and ra{pid error detection and recovery techniques which provide a basis for

implementing fault tolerance strateg_ies required by each user application.

FAULT TOLERANCE
MANAGER
-mapping the network
-invoking the daemons
-determing fault tolerance
strategy
-generating agents and

AS’Cnr

. Communication Links

AgE

HOSTE
The USER

Figure 3.1 Chameleon: A reliable, networked computing environment (this figure is taken,
from Iyer, et. al. [9]). . : ,

{0

.

T NI |

T Wl

Il

|

(|

[

[

i

} 4
{ R} [

wal

ﬂ” I

T R T T

diii i

(il

my Qi i

¢

gl il g

o g

il

To achieve these goals, Chameleon uses several specialized software components. These com-

ponents include: (1) Fault Tolerance Manager (FTM), a specialized independent and intelligent

entity capable of establishing an appropriate fault tolerance strategy cdmplying to the required
level of depéndaBility for a given user request, (2) Reliable, Mobilé, and Intelligent Agents
capable of migrating through the networked environment 'and operating independently on be-
half of the FTM according to built-in specifications and instructions, (3) Surrogate Ménagers
operating as pseudomanagers for particular applications, capable supporting proper commu-
nications with the agents, which guard against faulty behavior of the application’s execution
on remote hosts, (4) Host Daemons. residing on each node (throughout this thesis, the words
node and host will be used interchangeably to refer to a machine participating in the reliable
networked environment) and responsible for handshaking with the agents and managers and
monitoring their behavior, and (5) Software Libraries providing basic building blocks to create
or re-engineer agents. The goal of the syétem is to prevent any single point of failure from
compromising the enfire system.

The Chameleon implementation does not use a specialized language framework, rather it
is based on v}idely available scripting language;,”sﬁ;lrx- as TCL, and high-level programming
languages, such as C++. The goal is to provide a relatively thin software layer, which must
be present in each machine in the structure. It should be noted that nothing prevents using
a framework, such as CORBA (Common Object Request Broker Architecture) [12], for imple-
menting some of the features of Chameleon. It is believed, however, tﬁat an imple-mentation
with CORBA, whiie providing for easriermintgmgg}jgbiiljity between processes executing on differ-
ent machines in a heterogeneous environment, will increase Chameleon’s complexity, at least

in terms of the software that must be pre-installed on each node in the system. Chameleon

R L

L antane Jn LB)

attempts to maintain simplicity by allowing the user to develop the application in a regular
fashion and to execute it with the user’s éesi;ed level of dependability.

As described in Chapter 2, most of the cur.rént approaches used in distributed comp’utétions
require-a specializea, complex software layer that must be installed in each computation node,

e.g., sophisticated and complex underlying protocols for supporting a group membership and

" atomic broadcast. Because a primary objective of developing these systems is to provide a

software environment for executing distributed applications, the service availability issue is
not often considered to be critical. Consequently, there is no dedicated mechanism for error
detection, and the fault tolera.nc;e is somewhat a s‘ide effect of the use of the group communication
approach. The sysfem usually relies on error detection that is based on capturing the timeout

in a response from one of processes in the group.

3.2 Components of Chameleon

The five main components of Chameleon, as stated above, are described in more detail

in this section. Each component’s responsibilities, modes of operation, and communication

- patterns are discussed. Table 3.1 gives a brief summary of the main components.

3.2.1 Fault Tolerance Manager

The Fault Tolerance Manager (FTM) is the component of Chameleon that is responsible

for interfacing between the user and the system internals. The FTM has four main functions:

(1) mapping the network, i.e., identifying the network configuration and collecting information
about the nodes in the system. The FTM maintains an internal data structure that contains

this data and is updated when nodes are'added to or removed from the system, (2) invoking a

II "
n

n!

8§ 4

i B0 41 an W

£

|
f

(AR

iR

(Kl

i)

LA

Gilg’?

€ il

L,

i

(i

am |

Gl

L.

[

{l (T 11

£

| Component | -~ Task | Recovery |
Fault Tolerance Manager || Oversees execution environment Backup FTM
(FTM) _ | takes over
Agent ' Implements specific techniques Host daemon
providing application-required notifies surrogate
: dependability ‘ manager
Surrogate Manager Oversees execution of a particular ‘Host daemon
' application -| notifies FTM
Host Daemon Provides communication gateway to Heartbeat agent
' ‘ agents and makes resources at a host notifies FTM
: available to the Chameleon environment
Agent Library Provides predefined agents and N/A
agent building blocks

Table 3.1 Chameleon system components, their tasks, and recovery mechanisms.

daemon process on each node in the network to support communication with the FTM, (3) col-
iecting information about applications from users, and (4) determining fault tolérance strategies
to allow the application to execute at the required level of dependability. The FTM’s decision
may be based on a history of fa.ilureé in the system as well as on applicati;)n requirements.
Detection and recovery techniques are taken from the agent libraries to construct the agents
necessary to implement the chosen fault tolerance strategy.

In the initialization phase, the FTM collects information about the system conﬁguration-
and charg,cteristics of individual nodesr, such as type of architecture, operating system, size of
the RAM, etc. Initialization agents are sent to the hosts to obtain this data and to install the
host daemons on participating machines. After successful initialization, Chameleon is ready to
accept >user requests.

Whe_n e; user request arrives, the FTM designates a query agent to acquire the necessary
information on the apﬁlica.tion speciﬁcs, such as the required é.vailability Ievel,vneeded system

resources, type of results, etc. Based on information collected about the application, the FTM

P

Y1 T O PR

can identify the necéssa.ry fault tolerance strategy and can designate a set of agents to initiate
and monitor the applic;),tion. Creation of agents is performed according to a predefined pro-
cedure that uses two software libraries: (1) a library of building blocks and (2) a library of
agents. The FTM may create new agents from the basic building blocks or may re-engineer
already existing agents to extend their functions. Agents designated to support the applica-
tion’s execution migrate through the network to the selected nodes and initiate the application’s

execution. One of the designated agents is resident in FTM and is responsible for supporting

proper communications with the agents that monitor the application on the remote hosts. To

ensure a rapid reaction to the application’s failures, the application is watched by the agent

that evoked it. The agent communicates to the FTM any detectable application misbehavior.

As the agent itself may fail, it is watched by the host daemon, which is capable of notifying -

the FTM about agent failures. The FTM can regenerate a new agent either to complete or to
restart the application (if the applicétion failed). It should be emphasized that agenés, once
generated, can act aﬁtonomously, and the FTM is free to serve other user requests. In order
to detect node failures, the FTM uses heartbeat méssages, which are sent with a predefined
frequency. In the case of node failure, the appliéa.tion(s) executed on the node al;e'migrated to

other available nodes. To operate reliably, the FTM must be resilient to errors. Consequently

_ it must provide a sufficient level of redundancy to cope with errors. To handle F'TM failures, a

backup FTM is used. The role of the backup FTM is to periodically send a heartbeat to the

FTM to determine whether it is alive. In the case of an FTM failure, the backup FTM has the

capability to act as the FTM until the primary FTM can be recovered.

10

¥ I

4

I
L]

i

(!

|

(o A Wl

i

TR

il

q

1 i

B

Coowihognoar fo i

£ i

|

by

3.2.2 Reliable, Mobile Agents

The agents in Chameleon are designed as fault resilient carriers of information to and from
the FTM and other managing entities. They are designated by their ménager to perform
the actions and operations needed. for successful completio_n of an applica.ti.o.n, while adhering
to the user’s needs for dependability. Each agent is designed to be sufficiently intelligent to
execute specified functions in an autonomous fashion. This autonomous na.tﬁre of the agents
aids in offloading much of the processing from tﬁe FTM. This decreasing of the burden on the
FTM enables the FTM to concentrate on its primary tasks as described above. The primary
characteristics of agents are (1) mobility, (2) reliability, and (3) scalability.

Mobility: Agents migrate through Chameleon’s network in order to accomplish their tasks
as defined by their manager. Well-known communication protocols such as TCP /IP can be
used to support this mobility.

Reliability: It is imperative that agents are resilient to network and node fa_xilures. To
achieve this, the agent code in the existing agexit libraries is tested. rigordusly against érroneous
execution. It is also important to ensure that a faiiure in the agent does not cause a crash of
the application it was in charge of executiné and that the agent’s crash does not propagate out

of the node on which the agent currently resides. To prevent such behavior, agents are watched

- by host daemons. The host daemon is notified which agents it will have to monitor for possible

crashes when each agent is installed on its host. If an agent fails, the daemon notifies the
agent’s manager. To protect the agent from corruption in the network it and its transmissions
are gua.r‘dec'l with a checksum.

. Scalability: It is simple to create o} re-engineer agents using elementary building blocks

or already existing agents. Chameleon provides a unified, general framework for creating

11

new agents or extending functions of already- existing agents, e.g., the user might provide an

A application-specific detection mechanism to be incorporated into an agent. Two basic software

libraries support this approach: (1) a library of building primitives and (2) a library of agents.

These libraries are discussed in more detail below.

3.2.3 Surrogate Managers

A surrogate manager is spewned by the FTM after the required fault tolerance configuration
has been determined. It is created using a procedure similar to the one employed for creating
agents. Each surrogate-'manager is associated wi'gh an application (or possibly several applica-
tions may. share the same surrogate manager). The surrogate manager can be seen either as a
“super agent” or pseudomanager. It is capable of acting as e re@ﬂar agent, e.g., it can travel
through the network to the designa.ted nodes, and it is recognized and Vmonito?ed by the host
da.emon At the same time, it is capable of operating as a manager, ie., it s‘upervisee agents
designated to control the apphcatlon and it can regenerate agents that failed during operatmn
To facilitate autonomous and independent operation of the surrogate manager, a portion of the
system informatioe maintained by the FTM ie also kept with the surrogate manager. By this
means, the application can survive even in the case of FTM failure. The eystem information
thra.tﬂ must be available to the surrogate manager includes full specification of the application

and access to the software libraries used to create and re-engineer the agents.

3.2.4 Host Daemons

The host daemons are ent1t1es at each of the hosts which are responmble for handhng

communication between agents, surrogate managers, and the FTM The daemon processes

are responsible for accepting and installing any agents sent to their host; they interact with

12

iy

L

(IR

e

13

The library of agents contains hierarchically arranged, already available agents, which have
the flexibility of extension: (1) basic agents, (2) agents extended from the basic agents using
primitive building blocks, (3) complex agents derived from the combination of existing agents,

and (4) user—defined agents from existing Or user—deﬁned building blocks.

3.3 Fault Tolerance Strategies

Once the FTMhas decided to run an application using a particular fault tolerance strategy
the set of agents and an associated surrogate manager are invoked to set up the environment t0
support the selected strategy (e.g., triple modular redundant mode). The surrogate manager
takes over management of the application from this point, and the agents begin their duty
of installing, executing, and monitoring the application. When the application completes, the
agents are responsible fdr notifying the surrogate manager of the final results.

There are five predeﬁned modes of application execution: single machine with no recovery,
single machine with recovery, drrplicated execution, triple modular reddnda.nt execution, and
quad execution. Each of these is outlined below |

In single machine with no recovery mode, the user apphcation ijsrupon a single node with

no special recovery steps taken in the event of failure. This mode is the least reliable of the

: predeﬁned modes of execution.

Single machme with recovery mode also executes the apphcatlon on a single system node,
but it provides recovery in the event of application failure. This recovery mcludes restarting
the application (possibly from a checkpoint) in the event of abnormal'application termination.

The monitoring and restarting is performed by a specialized execution agent

14

L1 G

filil |

]

¢ 11

(il

I

i

ﬂ

E

L

G am

i

Ggia G Gl g0

i

ﬁ

i

i

- In duplicated ezecution mode, the user application is executed concurrently on two separafe
machines. When resulﬁs are obtained from each application, they are compared by a specialized
voter agent. If the voter agent finds a discrepancy between the two results, it notifies the
surrogate manager that the application failed; othefwise, the application is considered to have
completed successfully.

In triple modular redundant mode, the appligation is executed on three separate machines;
with the results compared by a voter agent when all execution has completed.

Quad ezecution mode provides the highest level of dependability of the predefined execution

" modes. The application is run on four nodes as two sets of duplicated applications. Each set

has a voter agent, which compares the results of the two applications. If no discrepancies are
found, another voter agent compares the results from these two voters and notifies the surrogate

manager of the results.

3.4 An Example Application

This section describes the steps taken to execute a user application in duplicated execution
mode. The figures below provide a graphical portrayal of this process. It is assumed that all
initialization has compieted at the beginning of the application’s execution.

Figure 3.2 shows the processing of the user request. The FTM is notified of the request and
sends a query agent to the user’s machine to obtain information about the request. The query

agent is installed on the user’s machine and collects information about the application from the

user. The query agent then returns with the query results and application code to the FTM.

Figure 3.3 portrays the selection of fault tolerance strategy by the FTM and the installation

of the appropriate agents and associated surrogate manager. In this case, the FTM has chosen

15

whl

4 ik

FAULT TOLERANCE \

MANAGER

Figure 3.2 User communication and query agent.

to execute the application in duplicated execution mode, as described above. The FTM is
responsible for retrieving and/or constructing the proper agents from the agent libraries. Each

host daemon receives, installs, and initiates execution of its incoming agent or manager. It is

‘worthwhile to note that the user’s host need not be a part of the execution environment.

The application installation and execution is depicted in Figure 3.4. Once the execution

agents have been installed, they request the application code from the FTM. After receiving

this code, it is compiled by the agent and executed. During the execution, the application -

is periodically monitored b); the agent, which is in turn periodically monitored by the host

daemon. -

When the applications have completed, the sequence of events shown in Figure 3.5 occurs.

The results from each application are sent to the voter agent. Once all results have been

16

v

€

N

! i Al
RN N

o

il

TR T

i
{
i

1

{

|
|

gm it

»
i

,
|

{11

i

f
|

el i

N

L

i

T

wiy g o

f)

Execution
Agent

FAULT TOLERANCE \

MANAGER

Execution
Agent

Analysis of user request
parameters, decision to

execute in duplicated mode,
agents and surrogate constructed

Figure 3.3 Agent and surrogate manager installation.

obtained by the voter agent, a comparison is done. This comparison may check for an exact

“match, or it may check that the differences lie within an allowable range as specified by the

user to the query agent at the beginning of the #ser requést. After a successful comparison,
fesults are sent by the voter agent to the surrogate manager, which in turn sends them to the
FTM. When the FTM receives the results of the application, it notifies the user and sends and
recursively uninstalls the sur;'ogé,te manager and ifs a;geﬁts. (Recursive uninstallation means
that each manager uninstalls those entities directly under its command, e.g., in under duplicated
execution, the FTM uninstalls the surrogate manager, and the surrogate ﬁnana.ger uninstalls
the two exgacution agents and the voter agent.) |

The scenario described above does not show system beilaw(ior under failures. A similar

scenario detailing the steps taken to detect and recover from a failure is detailed in Chapter 5.

17

Request
application

Send
nppl code
yd

.) c°de .
HOST A \
@ The USER . FAULT TOLERANCE

- MANAGER

Request application

Figure 3.4 Application installation and execution.

3.5 Summary

Chameleon provides an environment for efficient creation and execution of dependable ap-

plications. It provides various mechanisms to detect and recover from failures in a dynamically

changing networked environment. Chameleon allows for applications with varying dependabil-
ity requirements to be efficiently executed on the same reliable networked platform using an

application;speciﬁc fault tolerance strategy for each user-submitted application.

18

1! 8

(T

(1

LRI

1

|

{

(i

\
i

-

"
i

——

{l

qim

At |

Gy

Application

resuits / \
FAULT TOLERANCE

MANAGER

Application
results

Final results

HOSTE

Figure 3.5 Completion of application.

19

CHAPTER 4

SIMULATION OF CHAMELEON

4.1 Overview

A simulation has been constructed to model the Chameleon system. The simulation quels
the behavior of the FTM, host daemons, surrogate managers, and agents and their interac-
tions. 'i‘he goal of the simulation is to obtain igformé,tion about the effect of fault tolerance
detection and recovery strategies in terms of fault coverage and performance ciegradation. This
information can in turn be used to guide the implementation of Chameleon. The simulation
was writteﬁ in DEPEND (7], a functional, process-basea simulation tool. DEPEND was chosen

particularly for its emphasis on modeling fault tolerant systems.

4.2 DEPEND

DEPEND is a simulation-based CAD environment built on top of CSIM [15] that helps
- computef systems designers study the behavior of a system in detail. DEPEND is designed to
be a joint performability and dependability analysis tool. DEPEND provides an ob ject—orient;.ed
C++-based framework which allows for thé evaluation of dependable computer systems. Thé
tool provides facilities to model components often found in fault tolerant systems and allows for
automat;e(-i fauit iﬁjéction. Bs'r an acceleraf;ion fechnique, DEPEND allows ifs users to obtain a

detailed and statistically valid dependability analysis of a given system.

20

N 3

{1

i

o

P

(

i)

(o

|

,,'
!

A

(A A

]
|

i

|
1

LI

@

(o

(/i

G0

I

(TH

i

|

The methodology of DEPEND is a three-level hiera.rchy. Simulation objects are used to de-
scribe models. Process entities in each of these simulation ob jects represent schedulable units.r
Fina.lly; stmulation constructs in each of the processes provide for coramunication, synchroniza—
tion, and resource allocation. '

DEPEND is a hybrid simulation engine, taking advantage of the flexibility of process—based
simulation and the speed of event-based simulation. Compiler-based techniques are used to
translate from a process—based model ta a hybrid process-based/event—driven model fo increase
simulation speed. Process-based techniques are used because process interaction isrgenerally a
better model of system behavior.

DEPEND supplies a library of C++ objects that simulate the functional behavior of com-
ponents often found in fault tolerant systems. These objects also inject faults, initiate repairs,
compile sfatistics, and generate reports. To use DEPEND, a user writes a control program in
C++ 'wi?:h ;he objects prpvidéd by DEPEND. The program is then compiled and linked with
DEPEND objects and the run-time environment. The model can then be executed in a simu-

lated parallel environment. In this environment, all objects execute simultaneously to simulate

the functional behavior of the architecture.

4.3 Simulated System Description

The system being modeled by this simulation consists of eleven hosts (one host dedicated to
the FTM). Each host is simulated as having a sihgler processor with a round-robin scheduling
policy with a specified time slice. The hosts are attached to a Myrinet switch [3] through which

all communication takes place.

21

Agent
AgentExecute ' Manager AgentVoter A gentHB
Surrogate
FTM Manager Daemon
SMExec SMQuad

Figure 4.1 Class hierarchy of simulated Chameleon components.

4.4 Data Structures

The major data structures used in the simulation are C++ classes modeling the main
components of Chameleon. All major Chameleon components except as the host data structure

are derived from the Agent base class. The class hlera.rchy is deplcted in F1gure 4.1. The

host class, not shown, is derived from the FT_server class in the DEPEND class library. This .

hierarchical design of the simulation allows for new types of agents or other simulated Chameleon

constructs to be integrated into the simulation code relatively easily.

22

€' 4 §u0 € 8§

| I

. |

(|

.

1 4 {

h

Er

4

i

il 1

(il

111 (R T 1N 1 S

{ifl

(I

Il

i

4.4.1 Agent Classes

- The Agent base class includes methods common to nearly all the system components, such
as a message sending method, a message processing method, an execute method, and fault
injection methods.

Three types of agents are modeled in the simulation: the execution agent, the heartbeat

_agent, and the voter agent. Neither the heartbeat agent nor the voter agent have any additional

methods; the methods from the Agent base class are simply specialized for the behavior of
the agents. The execution agent has one additional method, which allows it to monitor its

application. Each of the inherited methods is also specialized for the execution agent.

4.4.2 Manager Classes

The Manager class is derived from the Agent class. Additiona.l functionality of the Manager
class includes the ability to maintain lis-ts of hosts and agents associated with the manager and
the ability to install and umn;tall agents. Additional message—processriﬁg capabilities are also
included.

The host daemon and FTM classes are both derived from the Manager base class. Additional
methods used by the daemon class include those to monitor for incoming messages, to dispatch

messages to the appropriate agents, and to monitor the agents residing on the daemon’s host.

‘The FTM’s class has an additional method to process incoming user requests, as well as methods

to execute the requests using the proper fault tolerance strategy.

23

4.4.3 Surrogate Manager Classes

The SurrogateManager class is derived from the Manager class. Additional functionality

includes the ability to process more types of messages than the Manager base class. Both the

replicated surrogate manager class (used for executing applications in duplicated mode and
TMR mode) and the quad surrogate manager class (used for executing applications in quad
mode) are derived from the base SurrogateMa.nager class. Each one has its inherited methods

specialized to perform its designated tasks.

4.5 Simulation Behavior

The simulation need not simulate all behavior of Chameleon. It is only useful to simulate
behavior related to the measurements the simulation will provide. Failure to abstract away

some system behavior could cause significant performance degradation in the simulation. The

initialization procedure (i.e., the handshaking procedure to install a daemon and register a host

with the FTM) was not modeled in the simulation, as it only affects the system startup cost and
not the execution of user requests. Also, actual execution of code is not simulated. Only the
use of a host’s processor is simulated. The simulation concentrates on system-level behavior

rather than modeling the program counter, caches, etc., on each host.

Only three modes of execution are simulated: duplicated, TMR, and quad mode. These are

‘the modes that require the most overhead and are the most interesting for the results obtained
in this thesis. All agents are assumed to exist in the agent library, no user-specified agents have

been simulated, and agents are never built from building blocks in the simulation.

24

¢ U q E]

(!

|
L

Ul o

d

i

i

il

Gl

i

i N

(0l

gl

il |

WL

(I8l

|

i |

gy

i

1

{

{1

CHAPTER 5

FAULT HANDLING IN THE SIMULATION

5.1 Overview

. To see how Chameleon handles failures it was necessary to simulate failures to variou_s
cofnponents during execution of the simulation. There are three main parts to the failure
process: fault injection, fault detection, and fault recévery. This chapter provides a detailed
description of the injection, detection, and recovery strategies used for each ofv the simulated
components.

Table 5.1 brieﬁ}; summarizes the detection and rf.ec‘overy process required for each component

into which faults are. injected in the simulation. This is discussed in more detail below.

5.2 Fault Injection Strategy

Fault injection in the simuiation is implemented using the DEPEND fault injector object.
The coniponents that may fail are: Hgsts, Execution Agents, Voter Agents, Heartbeat Agents,
Surrogate Managers, User Applicétions, and the FTM. Each instantiated object of these types
has an internal fault injector, which is started at the time the comimnent begins executing. For
each component, faults are assﬁméd tc; occur a.ccord‘ing to an exponential distribution.

The fault injection strategies for the different components are very similar. All faults injected

are permanent and fail-silent, with the exception of faults in the FTM, which are transient and

25

| Failure Consequence | Detection By Recovery
Agent Crash || Agent lost Resident 1. Agent’s manager notified.
Host Daemon 2. Manager constructs new
agent.
3. Manager installs new agent.
Surrogate Application running | Resident 1. FTM notified.
Manager without supervision | Host Daemon 2. FTM constructs new
Crash ‘ surrogate.
3. FTM installs new surrogate.
Host Crash || All agents on Heartbeat Agent | 1. FTM notified.
host lost 2. FTM deregisters host.
3. FTM migrates affected agents
it manages to new host.
4. FTM notifies immediate
managers of failed host; these
managers migrate their agents
and recursively notify all
. : subordinate managers.
User Program fails to Execution Agent | 1. Execution agent’s
Application |.complete normally; manager notified.
Crash no results 2. Restart application.
' produced
FTM Crash | Chameleon (Transient failure) | N/A
: o environment
proceeds without -
supervision

fail-silent. Permanent failures are failures that exist indefinitely until some corrective action is
taken. Transient failures exist only for short periods of time. A fail-silent fault is one in which

the failed component stops communicating with other components rather than continuing to

send possibly faulty communications.

A faultinjected into a host in this system will cause the host to become unreachable, and all
applications executing on that host will terminate and be lost. A fault injected into any agent

or manager will cause execution of that component to terminate, and it will be incapable of

26

Table 5.1 Simulated fault injections, detections, and recoveries.

(

™
b

{0

¢ Wy W w &1 €

I

H\
i

vl @l g ! i

IR ¢

g}

il

=

e

bl

it

N

(o

1
l

{1

il

]

¢

i |

]

i

oo

il

gil

receiving or sending any sort of communication. A user application that fails will immediately
stop executing and will produce n;> results.

One component into which faults are not injected is the 'host daemon. The reasoning behind
this is that host daemon failures have the same effect as node failures and are handled in the
same fashion as node failures. A failed host daemon prevents its host from receiving or sending

Chameleon-related communications.

5.3 Fault Detection Strategies

Chameleon has several built-in failure-detection capabilities to cover the different compo-

nents that may fail. This section describes how each type of failure is detected in the simulation.

5.3.1 Agent

To detect agent failures for each type of agent, the daemon residing on that agent’s host
periodically polls each agent to see whether it is still alive. Tﬁis is meant to simulate a process
table lookup or something similar. It is simulated by checking a field in the agent class indicating
whether the agent is alive. If the daemon determines the agent is no longer alive, it removes the
agent from its list of agents to monitor and sends a message to the aéent’s manager (surrogate
managervor FTM) indicg.ting the failure. This polling method is used rather than attempting to
capture signals because it can be used to simulate detection of failures like livelock (by checking

the process’s program counter) as well as abnormal termijnation failures.
progr

.27

5.3.2 Surrogate Manager

Detection of failures in a surrogate manager is much the same as detection of agent failures.
Each surrogate manager is polled periodically by the resident host daemon. When the daemon

detects a failure, it sends a notification message to the FTM.

5.3.3 User Application

To detect failures in.the user application, the application is periodically monitored by its
execution agent in much the same way agents are monitored by the resident host daemons.
When a user application has failed, the execution agent sends a message alerting the surrogate

manager of the failure.

5.3.4 Host

To detect host failures, a heartbéat agent resides on the same host as the FTM and peri-

odically sends heartbeat messages to all hosts registered with the FTM. Each host is expected

to respond to a heartbeat within the defined heartbeat timeout interval. Since a failed host -

is incapable of communicating, it will not respond to heartbeat messages. Once a heartbeat

timeout is detected, the agent stops sending heartbeats to that host and notifies the FTM of -

the failed host.

535 PTM

Iinplementétion of failures in the FTM was done quite differently from the other failure

detection and recovery mechanisms. Several methods for detecting FTM failures have been

conceived, such as running the FTM in triple modular redundant mode, having a backup FTM

28

1 8 €0

|
I

(i

o

t

i

{1

i

LIRS

(il

i

il

{1

il

(|

filll

i
3

Wi o

glci

qm i

I

it

which is alerted of 11’pd$,tes to the primary FTM’s data structures, and executing the FTM on a
dedicated, highly reliable computation node. None of thése was implemented in the simulatiog.
Instead, when a failure occurs in the FTM, detection is assumed to occur after a random
amount of time (based on an exponential distribution), and the FTM recovers after that time.
Essentially, FTM failures are modeled as transient failures.

This transient failure model is used for the FTM because, at the vtime the simulation results -
were taken, the detection and recovéry for the FTM in the Chameleon implementation had not

yet been established. The transient model should be sufficient to examine the effects to the .

‘ system when the FTM fails, however that failure imay be handled.

5.4 Fault Recovery Strategies

Once a failure has been detected using the methods described above, the next step is to
recover from the failure. Chameleon has the capability to recover from each of the faults injected
in the simulation. These recovery techniques are described below. There is no subsection for

the Fault Tolerance Manager in this section because of the transient nature of its faults.

5.4.1 Execution Agent

Wheﬂ an execution agent fails, its surrogate manager is responsible for its recovery. Once
the surrogate manager receives a failure notification from the agent’s resident daemon, it uses
information it has about the failed agent th: ;e;oﬂxilrsrtruct ;3, néw execution agent. The surrogate
mahager must maintain information about thg voter to the execution agent sends its results

and the application which the execution agent was monitoring. It then installs this new agent

on the same host and sends it the application to be restarted. Once the new execution agent is

29

installed and running, a message is sent to its voter notifying it of the new agent from which it

should expect results.

5.4.2 Heartbeat Agent

The FTM is the entity responsible for recovering a failed heartbeat agent. Once the FTM

~ is notified about the failure, it reconstructs a new hearti)eat agent. The FTM provides the new

heartbeat agent with its list of registered hosts. Once the agent has been reconstructed with

this information, it is installed and begins sending heartbeats to the hosts provided to it by the

FTM.

. 5.4.3 Voter Agent

When a voter agent fails, its surrogate manager is responsible for its recovery. Once the
surrogate manager receives a failure notification from the agent’s resident daemon, it uses
information it has about the failed agent to reconstruct a new voter agent. The surrogaté

manager must maintain information about the entity to which the voter agent was intended to

send its results (the surrogate manager itself, or possibly another voter agent) and the agents

from which the voter agent expected to receive results. It then installs this new agent on the
same host. The destination entity for the new voter’s results (in the case that it is not the

surrogate manager itself) is then notified of the new source by the surrogate manager.

Once the voter agent has been installed, it sends a message to each of the agents on whose
results it is voting, instructing them of the new destination for their results. Upon receiving

this message, an agent will send its results, if they have already been computed, as well as

updating its destination agent. This allows the voter to recover any results sent during the

30

L
M

810 €

g

!l

{

(RN R T T

,1

|

I

i 11

N

[

1

(i

il

i

Cul i

Al

U1

A4

I 11

il

period between when the fault occurred and recovery completed, or to immediately receive any

results the failed voter had already received.

5.4.4 Surrogate Manager

In the case of a sﬁrrogate ma.nz_a.ger’s failure, the FTM is responsible for its recovery. Once the
FTM has received a notification of the failure, it reconstructs the surrogate manager, providing
it with the list of agents the failed Iﬁanager was overseeing and the expeéted communications
flow between the agents (which agents expect results from which other agents). When the
reconstruction is complete, the surrogate manager is installed on the host on that the failed
oné was running. After installation, the new manager sends a request to its primary voter (the
voter which sends its results to the surrogate manager) to send any results it has. As with voter
agent recovery, if the primary voter has not computed results yet, it ignores the request.

In the special case that the surrogate manager was in the process of overseeing the instal-
lation of its agents when it failed, a nev-v surrogate manager is created from scratch. A_ll agenté
whose installation had completed under the failed surrogate manager are then uninstalled by

the FTM.

5.4.5 User Application

In the case of a user application’s failure, the execution agent is in charge of recovery.
Once the failure is detected by the execution agent, it sends a message to notify the surrogate
manager and restarts the application from the beginning (or from the most recent checkpoint, if

one exists). The surrogate manager’s notification allows the manager to notify the voter agent

'in case the voter agent has a specified timeout period, or if the application has failed multiple

times, the surrogate manager may decide to migrate it to a different host.

31

5.4.6 Host

The FTM is the entity responsible for recovery from a host failure. When the FTM is
notified of the failure by the heartbeat agent, the failed host is dereglstered from the FTM s
table of participating nodes. After dereg1ster1ng the host a message is sent to each surrogate
ma.nager notifying it of the host failure. W}'lenra. surrogate manager receives such a message, if it
determines an agent it i; managing was exécuting on the fa.iled host, the aéent is reconstructed
and reinstalled on a new host. This reinstallation procedure is similar to the one described
above for either an execution agent or a voter agent.

The FTM may recognize that a surrogate manager was residing on the failed host. In that
case, it restores the surrogate manager on a different host using much the same method as

described above for recovery from surrogate manager failures.

5.5 An Exam"ple Failure Scenario

This section outlines an example of a fa.ilure in duplicated execution-mode and the steps
taken to detect and recover from the failure. The failure shown here is a node failure that affects
the voter agent. The steps from detection of the failed hést to completion of the application
are detailed below and in Figures 5.1 through 5.3.

Figure 5.1 shows the detection of the host failure by the heartbeat agent. After not receiving
a heartbeat frofn the host within the specified timeout period, the heartbeat agent assumes the
um‘esponsiye néde has failed. The FTM is pfomptly notified of the failure and removes the
hést from its system conﬁgur'ation file. -

In Flgure 5.2, restarting of the agent on the failed node is portrayed First, the FTM searches

its hst of surrogate managers to determme whether the fa.lled host was home to a surrogate

32

e W

| l

|1.
l;.u

il

i

P

(IR

Gl

gif

i1

Sl

(e

ahi

{HIE

MANAGER

HOST A : \
@ The USER FAULT TOLERANCE

Heartbeat Agent recognizes
timeout; FTM

notified

Figure 5.1 Host failure detected by heartbeat agent.

manager. After that, the FTM notifies all of its surrogate managers o'f the host failure. When
a surrogate manager receives a host failure notification, it determines w;xrﬁether any of its agents
were located on that host. In this case, the surrogate manager notices the voter agent was
executing on the failed host. A new voter agent is created using the information the surrogate
manager maintaiﬁed about the unreachable voter agent. Once the voter is ready to be deployed,
the surrogate manager requests. a new host vir'rvom ’theiFTM. After receiving information about
the host, it installs the regenerated vé;_ter agent on 7this new host.

Figure 5.3 shows the final step in the recovery pro<;ess. The voter agent notifies the exécution
agents on whose results it will vote of its new loca.t;ion. Upon receiving this notification, the

execution agents modify their results destination accordingly. If the application being monitored

33

NETWORK

New host: Host A /éULT TOLERANCE \
MANAGER

Figure 5.2 Voter agent regeneration.

by the execution agent has already successfully terminated, the results are immediately sent to

the new voter agent.

5.6 Summary

Chameleon supports a number of mechanisms to detect and recover from failures of vari-

ous components. The injection, detection, and recovery strategies described above are those

that have been implemented in the simulation. All simulation results described in this thesis

incorporate the strategies outlined in this chapter.

34

i i it | | i

{

TR gl

=
=

i

|
i
i

=
-

@ HOSTB

New voter
notificatio;

/ AN
FAULT TOLERANCE
MANAGER

Figure 5.3 Execution agents notified of new voter agent.

35

CHAPTER 6

EXPERIMENTAL RESULTS

6.1 Overview

Using the simulation described in the previous two chapters, several simulated scenarios were
run and analyzed. The main focus of the results is on Chameleon’s fault-handling capabilities.

In this chapter, the evaluated scenarios and the results obtained are discussed.

6.2 Simulation Parameters

To obtain results from the simulation, it was necessary to choose values for certain critical -

parametérs (Table 6.1). The link bandwidth value was measured from preliminary implementa-.

tion results using TCP/IP, not the Myrinet API. Other parameters necessary in the simulation

included CPU times required for various tasks, such as the time it takes a voter to compare

results, the time it takes a daemon to process a message and send it to the appropriate agent, -

etc. Many of these times were taken from preliminary implementation measurements, others

were estimated.

6.3 Scenarios Evaluated and Measurements Taken

A primary goal of these measurements was to determine the performance degradation caused

by running an app;lication in Chameleon. Another goal was to measure the time to recover from

36

!
|

1 U { I { (|

¢l

00§

AL

Q.

il

L

|

!

{

g

Quie

{8

[Parameter Value
Heartbeat interval "l 5s
Heartbeat timeout 20 s
Daemon monitor interval i| 20 s
Agent monitor interval 20s
Link bandwidth 25KBytes/s

Table 6.1 Parameters used in the simulation.

single points of failure in various system compopents. A third goal was to analyze Chameleon’s
capability to handle multiple simultaneous failures.

To find the performance degradation with no fajlures, single user requests were simulated
running in duplicated mode, TMR mode, and quad mode. Eaéh of these scenarios was simulated
with background workloads of 0, 1.5 (two background jobs on half of the hosts, aqd one on the
other half), and 3.0 (three jobs on each host).

No background network traffic was simulated. In several runs of the simulation with sig-
nificant network traffic, only minimal performance degradation was noticed. The number of
background jobs running on the nodes had a much more profound effect on the time required
to execute user requests.

To measure the performance under single failures, the same three execution modes a;nd
the same' three background workloads were used as for the measurements with no failures. In
addition, a siﬁgle fault was injected during each execution of a user request. The faults were
injected into six different components: execution agents, heartbeat agents, surrogate managers,
hosts, user-applications, and voter agents. The times ;equired to complete these user reguests
were compared with the timeé to con;pletion, without failures. All user requests were assumed

to require 50 seconds of CPU time. The faults were injected into each component according to

an exponential distribution with a mean of 20 seconds. Each scenario was run with 10 different
seeds to the fault injector, and the results were averaged.

To see how well Chameleon handles multiple simultaneous failures, the simulation was run
with faults being injected into all components (each instance of the six components injected in
the single failure runs and the FTM). Along with this, the simulation was run with two fault

injections deliberately coinciding with several different pairs of faults.

6.4 Analysis of Results

This section contains the results obtained from running various simulated scenarios. The
results obtained are discussed and analyzed. Both single~ and multiple-failure scenarios are
presented, as well as the performance degradation in a fault—free environment.

Table 6.2 shows the overhead required for running an application under three different fault
tolerance strategies when no faults occur. The times are compared to the actual execution
time of the application, taking the system load into consideration. The Chameleon overhead
ranges from 6.5% to 11.8%, certainly reasonable to ensure that a critical application completes
with the correct results. Since the amount of overhead changes only slightly with the execution
time of the application, the percentage overhead should be smaller for applications requiring
more CPU time than 50 seconds. Under the same conditions with 1000-second applications,

the Chameleon overheads ranged from 2.1% to 2.8%.

" Tables 6.3 through 6.5 show the times required to recover from six different types of failures

for three different fault tolerance strategies. FTM failures were not considered because no

recovery mechanism for them has been modeled.

38

il ul N a 0 | S | |

fh

1

S

i

Il

[T l

(i G ol

£l

(i

L
&1

I

1
|
b

!l

[IE]

(ol

i

{1

(]

g

!
i

(Y

!

(1L

[Execution Strategy LAverage Load || Time ﬂ Chameleon Time ” Increase
Duplicated 0 50.00s | 54.06s 8.1%
Duplicated 1.5 100.00s | 107.38s 7.4%
Duplicated 3.0 200.00s | 213.00s 6.5%
TMR 0 50.00s | 54.74s 9.5%
TMR 1.5 100.00s | 108.76s 8.8%
TMR 3.0 200.00s | 215.44s 7.7%
Quad 0 50.00s | 55.89s 11.8%
Quad 1.5 100.00s | 111.72s 11.7%
Quad 3.0 200.00s | 218.74s 9.4%

Table 6.2 Overhead incurred by Chameleon under various loads and fault tolerance strategies.

Failed Component || Average || Time to Increase over Percent
Load Complete || Fault-Free Execution || Change

Execution Agent 0.0 81.87s 27.81s 51.4%
Execution Agent 1.5 134.09s 26.71s 1 24.9%
Execution Agent 3.0 237.36s 24.36s 11.4%
Surrogate Manager || 0.0 54.06s 0.0s 0.0%
Surrogate Manager || 1.5 109.12s 1.74s 1.6%
Surrogate Manager || 3.0 219.37s 6.37s 3.0%
Voter Agent 0.0 54.22s 0.16s 0.0%
Voter Agent 1.5 107.53s 0.15s 0.0%
Voter Agent 3.0 213.16s 0.16s 0.0%
Host 0.0 76.33s 22.27s 41.2%
Host 1.5 162.82s 55.44s 51.6%
Host 3.0 232.21s 19.21s 9.0%
Heartbeat Agent 0.0 53.89s -0.17s 0.0%
Heartbeat Agent 1.5 107.11s -0.27s 0.0%
Heartbeat Agent 3.0 212.76s -0.24s 0.0%
Application 0.0 83.28s 29.22s 54.1%
Application 1.5 136.00s 28.63s 26.7%
Application 3.0 240.66s | 27.66s 13.0%

Table 6.3 Performance degradation caused by single failures in duplicated execution mode.

39

For execution agent and application failures, the performance degradation includes the time
required to detect and recover from failure, as well as the time lost due to the fact that, the
application is restarted from the beginning. The results show that in the case of an execution
agent failure or an application failure, Chameleon may require approximately 50% or more extra
time to complete the application. Most of this time is due to the fact that the application must
be restarted from the beginning. If a failure occurred when an application was 99% complete,
it would take about twice as long by Chameleon to process the user request. The average time
taken for Chameleon to detect and recover from an application failure is 10.0 seconds; from an
execution agent failure, the time required is 10.8 seconds. These times were measured with no
load on the system and are constant with respect to the running time of the application. This
implies that most of the overhead is being caused by the application catching up to the point
of the failure.

In practice, overhead when there is an application or execution agéht failure will average
approximately 50% of execution time. For applications requiring a large amount of CPU time,
these overheads become very large. To prevent restarting the application from the beginning,
application checkpointing could be implemented. In the event of a failure in the application or
its monitoring agent, the application could be restarted from the most recent checkpoint. As
long as the checkpointing interval is not too large, this would solve the problem of the recovery
time increégihé with the execution time of an application. 7

Each set of results shows extremely minimal overhead for recovering from voter agent fail-
ures. In general, a voter agent failure should cause very little overhead. However, a failed voter

agent can cause more delay when the time between its failure and regeneration overlaps with

the completion of the application. All execution agents must stall until the voter is regener-

40

(] i |) {

ot {l

- Failed Component || Average || Time to Increase over Percent
3 Load Complete || Fault-Free Execution || Change
Execution Agent 0.0 81.87s . | 27.13s 49.6%
= Execution Agent 1.5 134.09s 25.33s 23.3%
= Execution Agent 3.0 237.36s 21.92s 10.2%
Surrogate Manager | 0.0 54.74s 0.0s 0.0%
iz Surrogate Manager || 1.5 124.26s 15.50s 14.3%
= Surrogate Manager || 3.0 223.24s 7.80s 3.6%
Voter Agent 0.0 54.90s 0.16s 0.0%
. Voter Agent 1.5 108.92s | 0.16s 0.0%
= Voter Agent 3.0 215.60s 0.16s 0.0%
Host 0.0 81.38s 25.49s 45.6%
= Host 1.5 167.98s | 56.26s 50.4%
= Host 3.0 237.59s 18.85s 8.6%
Heartbeat Agent 0.0 53.89s -0.17s 0.0%
- Heartbeat Agent || 1.5 107.11s | -0.27s 0.0%
~ Heartbeat Agent 3.0 212.76s -0.24s 0.0%
. Application 0.0 83.31s 28.57s 52.2%
- Application 1.5 136.06s | 27.30s 25.1%
~ Application 3.0 240.72s 25.28s 11.7%
= Table 6.4 Performance degradation caused by single failures in TMR mode.
L ated before sending the application results. This is a relatively uncommon occurrence, and the
. overhead is fixed with respect to the application’s running time.
- Surrogate manager failures are similar to voter agent failures in that the overhead is minimal
= except when the failure overlaps with the completion of the managed application. There is
s one other exception for surrogate managers. A surrogate manager may fail during the agent
==

installation process. In this case, the new surrogate manager must restart the entire installation

process, since no record is kept of which agents have been installed. This could be the cause

L
-

of significant overhead, especially in applications being executed with fault tolerance strategies

requiring a large number of agents.

41

Failed Component || Average || Time to Increase over Percent
Load Complete || Fault~Free Execution || Change

Execution Agent 0.0 83.78s 27.13s 49.6%
Execution Agent 1.5 137.38s 25.33s 23.3%
Execution Agent 3.0 241.96s 21.92s 10.2%
Surrogate Manager || 0.0 59.67s 3.78s 6.8%
Surrogate Manager || 1.5 146.00s 34.28s 30.7%
Surrogate Manager || 3.0 227.13s 8.39s 3.8%
Voter Agent 0.0 55.91s 0.02s 0.0%
Voter Agent 1.5 111.73s 0.01s 0.0%
Voter Agent 3.0 218.75s 0.01s 0.0%
Host 0.0 81.91s 26.02s 46.6%
Host 15 158.21s 46.49s 41.6%
Host 3.0 243.44s 24.70s 11.3%
Heartbeat Agent 0.0 55.71s -0.18s 0.0%
Heartbeat Agent 1.5 111.48s -0.24s 0.0%
Heartbeat Agent 3.0 218.62s | -0.12s 0.0%
Application 0.0 83.78s 27.89s 49.9%
Application 1.5 137.38s 25.66s 23.0%
Application 3.0 241.96s 23.22s 10.6%

Table 6.5 Performance degradation caused by single failures in quad mode.

It is interesting to note that in the case of a heartbeat agent failure Chameleon applications
require slightly less time to complete. This is because the host daemons do not need to process
heartbeat messages while the heartbeat agent is not alive. This decreases the number of jobs
vying for each processor slightly and allows the applications to finish a little bit more quickly.
Problems may occur when a host failure overlaps with a heartbeat agent failure. In this case the
time required to detect a host failure will markedly increase, potentially causing applications

to be stalled. This may not be realistic in the actual implementation, as the application may

be required to stall until the heartbeat agent can be recovered.

Host failures are another significant source of overhead. The average host failure takes

about the same time to detect as an agent failure because the heartbeat timeout interval is the

42

[|

U]

{i

Qi

same as the agent monitoring interval. Recovery time is slightly more because the surrogate
manager needs to request a new host from the FTM. The reason the results show such significant
overheads is that when a host with an execution agent on it fails, it requires more time to recover
from than an execution agent failure or a simple application failure. Again, this could be helped
by using a checkpointing scheme, as long the scheme is architecture-independent or there is
another host with the same architecture available for migrating the application.

It is not guaranteed that Chameleon is capable of recovering from multiple overlapping
failures. To test how well Chameleon fares with overlapping failures, the simulation was run
In a scenario in which all components could fail as described in the previous section. Running
100 user requests in this scenario yielded 93 completed requests. The remaining seven requests
did not complete because not enough hostsj A\%vér;available. No overlapping failures caused an
application to be lost.

Because the coverage of the scenario above may not have been complete, a few scenarios
were run where two failures were explicitly injected at about the same time. This resulted in
an FTM failure overlapping with a surrogate manager failure, which in turn caused the user
request to be lost. A few more runs showed that a user request will not complete in Chameleon
if an entity and its managing component fail at the same time.

Figure 6.4 shows the chain of events when an agent and its surrogate manager fail simul-
taneously. The double failure shown results in a race condition between the notification of the
execution agent failure and the regeneration of the failed surrogate manager. If the surrogate
manager js successfully restarted before the notification of the failed execution agent, the recov-

ery will be successful. If the notification of the execution agent failure arrives to the surrogate

43

Failure

HOST A notification pd
@ The USER FAULT TOLERANCE

MANAGER

/

Figure 6.1 Simultaneous failures in an execution agent and its surrogate manager.

managér’s node while the surrogate manager is down, the message is dropped and there is no
acknowledgement of the execution agent’s failure.

There are a few ways of correcting this problem, but they are not ironclad, and any attempt
to design mechanisms to recover from doubie failures will only add to the detection and recovery
overhead. It is hoped that simultaneous failures are sufficiently rare that they need not be
considered when devising fault recovery schemes. Agents, managers, and daemons in Chameleon
are designed to b¢ rcompact and simple so they can be thoroughly tested. This will help in

maintaining fault resilience and preventing such overlapping failures from occurring.

44

[
\

("

(I

5

(i

{10

(ll

di

(i |

ki |

O |

I

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this thesis, the simulation of fault injection and recovery in Chameleon, a framework
for supporting cost-effective fault tolerant computing services, was described in detail. The
simulation results have shown that Chameleon is an efficient environment for executing both
critical and noncritical applications, especially applications requiring large amounts of CPU
time.

The simulation showed that there is some room for improvement in some areas. A check-
pointing scheme could be implemented to more efficiently recover from execution agent failures
and user application failures. With such a scheme in place, the recovery overhead would no
longer be dependent on the application’s running time. Chameleon is capable of recovering
from some kinds of overlapping failures. However, some overlapping failures may cause user
requests to be lost. As long as these failures are relatively rare (i.e., recovery time is very short
compared to mean time between failures for each component), it is not necessary to develop
special recovery mechanisms. It is believed that Chameleon components are resilient enough
for this to be unnecessary. In summary, the simulation shows that Chameleon is capable of
providing a cost-effective, reliable, networked environment.

Future simulation work may include simulating additional failure modes, such as faults in
the communications medium, transient faults in components besides the FTM, and modes other

than fail-silent. Each of these modes will provide more insight into Chameleon’s fault-handling

45

capabilities. In addition, various methods for detecting and recovering from failures in the FTM
(e.g., the FTM running in TMR mode) should be modeled. The FTM is the most critical piece
of Chameleon, and it should be modeled very accurately to show that a single failure to the
FTM will not be catastrophic. The effectiveness of checkpointing should be analyzed through
simulation. Checkpointing will certainly help make recovery more efficient, but it is not known
how much of an effect it will have on normal system behavior and performance. Finally, methods
for handling parallel and distributed applications submitted by a user should be analyzed.
Since it is increasingly common for user applications to be of a parallel or distributed nature,
Chameleon should be able to handle these types of requests from users as well as it handles

single-threaded applications.

46

Ik

C i« qi
[I

(i

OFY R F

(i

REFERENCES

(1] K. P. Birman, Building Secure and Reliable Network Applications. Greenwich, CT: Man-

3]

[6]

ning Publications Co., 1996.

K. P. Birman and R. van Renesse, Reliable Distributed Computing with the Isis Toolkit.

New York, NY: IEEE Computer Society Press, 1994.

N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic, and
W.—K. Su, “Myrinet: A Gigabit-Per-Second Local-Area Network,” JEEE Micro, vol. 15,

pp. 29-36, February 1995.

F. Cristian, “Understanding Fault-Tolerant Distributed Systems,” Communications of the

ACM, vol. 34, pp. 57-78, February 1991.

H. M. Deitel, and P. J. Deitel, C++ How to Program. Englewood Cliffs, NJ: Prentice Hall,

1994.

D. Dolev, and D. Malki, “The Transis Approach to High Availability Cluster Communi-

cation,” Communications of the ACM, vol. 39, pp. 64-70, April 1996.

K. K. Goswami and R. K. Iyer, “DEPEND: A Simulation-Based Environment for Sys-
tem Level Dependability Analysis,” IEEE Transactions on Computers, vol. 46, pp. 60-74,

January 1997.

R. W. Horst, “TNet: A Reliable System Area Network,” IEEE Micro, vol. 15, pp. 37-45,

February 1995.

47

-

o

|

[9] R. K. Iyer, Z. Kalbarczyk, and S. Bagchi, “Chameleon: A Software Infrastructure and
Testbed for Reliable High-Speed Networked Computing,” Center for Reliable and High-

Performance Computing Tech. Rep. 13, University of Illinois, Urbana, IL, 1997.

[10] S. Maffeis, “Piranha: A CORBA Tool for High Availability,” IEEE Computer, vol. 30,

pp- 59-66, April 1997.

[11] Microsoft Clustering Architecture “Wolfpack,” White Paper, May 1997.

http://www.microsoft.com/ntserverenterprise/guide/wolfpack.asp

[12] Object Management Group. Ther Common Object Request Broker: Architecture and Spec-

ification (CORBA), Inc. Publications, Revision 2.0, 1995.
[13] D. Powell, “Lessons Learned from Delta-4,” IEEE Micro, vol. 14, pp. 36-47, August 1994.

[14] D. K. Pradhan ed., Fauli-Tolerant Computer System Design. Upper Saddle River, NJ:

Prentice Hall, 1996.

(15] H. D. Schwetman, “Introduction to Process-Oriented Simulation and CSIM,” in Winter

Simulation Conference, pp. 154-157, 1990.

[16] Sun RAS Solutions for Mission-Critical Computing, White Paper, October 1997.

http://www.sun.com/clusters/wp-ras/

[17] A. S. Tanenbaum, Computer Networks. Upper Saddle River, NJ: Prentice Hall, 1996.

(18] R. van Renesse, K. P. Birman, and S. Maffeis, “Horus: A Flexible Group Communication

System,” Communications of the ACM, vol. 39, pp. 76-83, April 1996.

48

1S

m,..
ﬂ o

"

REPORT DOCUMENTATION PAGE

Form Approved
OMB NC. 0704-0188

i dmmubnumuodtomool
QCIMMQ mamnnqmodaummdm the collection

Dﬂmu nmm.m!umgmmm

mmm

collection of informanon, el towwmmmn s«vieu. Di oo a Ropoﬂs. 1215J2'ﬂusonm
Mu:z uoa rate for
Dawis Highway, Suite !204 thmn VA22202-4302. to the Office of Management “&g:.", Paperwork Rmamm(omt-om) Wuhnqtcn 20503,

1. AGENCY USE ONLY (Leavs biank) | 2. REPORT DATE
1/30/98

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

An Analysis of Failure Handling in Chameleon, a Framework for
Supporting Cost-Effective Fault Tolerant Services

5. FUNDING NUMBERS

DABT63-94-0045

6. AUTHOR(S)
Erik Haakensen

NASA NAG 1-613

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES)
Coordinated Science Laboratory

University of Illinois
1308 W. Main St.
Urbana, IL 61801

8. PERFORMING ORG-NIZATION
REPORT NUMBER

- _._-(CRHC-98-01)

Arlington, VA 22203-1714 Hampton, VA 23681

UILU-ENG~98-2204
9. DARPA fOR(j)NG / MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING.I MONITORING
3701 N. Fairfax Dr. NASA Langley Research Center AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this re
an official Department of the Army position, policy or

ort are those of the author(s) and should not be construed as
ecision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

~ Approved for public release; distribution unlimited.

12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The desire for low-cost reliable computing is increasing. Most current fault tolerant computing solutions are not very
flexible, i.e., they cannot adapt to reliability requirements of newly emerging applications in business, commerce,
and manufacturing. It is important that users have a flexible, reliable platform to support both critical and noncritical
applications. Chameleon, under development at the Center for Reliable and High-Performance Computing at the
University of Illinois, is a software framework for supporting cost-effective adaptable networked fault tolerant
service. This thesis details a simulation of fault injection, detection, and recovery in Chameleon. The simulation
was written in C++ using the DEPEND simulation library. The results obtained from the simulation included the
amount of overhead incurred by the fault detection and recovery mechanisms supported by Chameleon. In addition,
information about fault scenarios from which Chameleon cannot recover was gained. The results of the simulation
showed that both critical and noncritical applications can be executed in the Chameleon environment with a fairly
small amount of overhead. No single point of failure from which Chameleon could not recover was found.

- Chameleon was also found to be capable of recovering from several multiple failure scenarios.

14, SUBJECT TERMS

adaptive fault tolerance, highly available networked computing
error detection and recovery

15. NUA%BEF\ IF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OR REPORT OF THIS PAGE - OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500

by ANSH

240 «

Shndlrd Form 298 (239- 2-89)
tucnboa o

1l

¥

TR

C I

